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Finding Dantzig selectors with a proximity operator based

fixed-point algorithm ∗

Ashley Prater† Lixin Shen‡ Bruce W. Suter†

Abstract

In this paper, we study a simple iterative method for finding the Dantzig selector, which
was designed for linear regression problems. The method consists of two main stages. The first
stage is to approximate the Dantzig selector through a fixed-point formulation of solutions to
the Dantzig selector problem. The second stage is to construct a new estimator by regressing
data onto the support of the approximated Dantzig selector. We compare our method to an
alternating direction method, and present the results of numerical simulations using both the
proposed method and the alternating direction method on synthetic and real data sets. The
numerical simulations demonstrate that the two methods produce results of similar quality,
however the proposed method tends to be significantly faster.

Key Words: Dantzig selector, proximity operator, fixed-point algorithm, alternating direction
method

1 Introduction

This paper considers the problem of estimating a vector of parameter β ∈ Rp from the linear
problem

y = Xβ + z, (1)

where y ∈ Rn is a vector of observations, X an n×p predictor matrix, and z a vector of independent
normal random variables. The goal is to find a relevant parametric vector β? ∈ Rp among many
potential candidates and obtain high prediction accuracy.

The `1 penalized least squares estimator for problem (1) has been the focus of a great deal
of attention for variable selection and estimation in high-dimensional linear regression when the
number of variables is much larger than the sample size [10, 20, 23, 25, 26, 29]. Recently the
Dantzig selector was proposed for problem (1) in [6]. The Dantzig selector β̂ ∈ Rp is a solution to
the optimization problem

β̂ ∈ argmin{‖β‖1 : ‖D−1X>(Xβ − y)‖∞ ≤ δ}, (2)

with a fixed parameter δ > 0 and a diagonal matrix D where the diagonal entries are equal to
the `2 norm of the columns of X. Here, we write ‖x‖q for the `q norm of x ∈ Rp, 1 ≤ q ≤ ∞.

Optimal `2 rate properties for ‖β̂ − β?‖2 were established under a sparsity scenario and impressive
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research is supported in part by an award from National Research Council via the Air Force Office of Scientific
Research and by the US National Science Foundation under grant DMS-1115523.
†Air Force Research Laboratory, Information Directorate, Rome, NY 13441
‡Department of Mathematics, Syracuse University, Syracuse, NY 13244, USA.
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empirical performance on real world problems involving large values of p was shown in [6]. Since
then the Dantzig selector has received a considerable amount of attention. Discussions on the
Dantzig selector can be found in [3, 5, 7, 11, 13, 21, 24]. In [15], an algorithm was proposed for
fitting the entire coefficient path of the Dantzig selector with a similar computational cost to the
least angle algorithm that is used to compute the `1 minimization via the LASSO technique. The
Dantzig selector is a convex, but not strictly convex, optimization problem. Unique solutions are in
general not guaranteed. Conditions ensuring the uniqueness of the Dantzig selector were presented
in [9]. In [17] a new class of Dantzig selectors for linear regression problems for right-censored
outcomes was proposed.

The importance of the Dantzig selector in linear regressions has been demonstrated in the afore-
mentioned work. Efficient methods for solving problem (2), which however were not emphasized
in the current literature, are highly needed. In [6], the problem is cast as a linear program which
is solved by using a primal-dual interior point algorithm [4]. As it is well known, interior point
methods are not efficient for large-scale problems. In [2], the problem is cast as linear cone pro-
gramming problem for which a smooth approximation to its dual problem is solved by an optimal
first-order method [1, 22]. Recently, an alternating direction method (ADM) for finding the Dantzig
selector was studied in [18]. Numerical experiments showed that this method usually outperforms
the method in [2] in terms of CPU time while producing solutions of comparable quality. The
problem was rewritten in [18] in a form to which ADM can be easily applied. ADM itself is an
iterative algorithm. In each iterate, two subproblems are needed to be solved successively. One of
the subproblems has a closed form solution, while the other does not and is approximated by a
nonmonotone gradient method proposed in [19]. To alleviate the difficulty caused by the subprob-
lem without a closed form solution, a linearized ADM was proposed for the Dantzig selector and
was shown to be efficient for solving both synthetic and real world data sets in [28].

In this paper, the Dantzig selectors for problem (2) are found by an algorithm based upon
proximity operators. We first rewrite the problem as an unconstrained structural optimization
problem via an indicator function. The resulting problem is then solved by a primal-dual algorithm.
In comparison with the one given in [18], our proposed algorithm is easy to implement. Ours
achieves comparable quality results while consuming much less CPU time.

The outline of the paper is organized as follows. In Section 2 we present our fixed-point theory
based proximity operator algorithm for solving problem (2). In Section 3, we present numerical
experiments comparing the accuracy and efficiency of the proposed algorithm with ADM proposed
in [18]. The first set of experiments uses simulated sparse signals and the second set uses samples
of biomarker data to predict the diagnosis of leukemia patients. Section 4 concludes the paper.

The following notation will be used in the rest of the paper. For any vector u ∈ Rd, let ui and
u(i) both denote the i-th component of u. Also for any vector u ∈ Rd, |u| is the component-wise
absolute values of u, that is the i-th component of |u| is |ui|, while sign(u) is the vector whose i-th
component is 1 if ui > 0 and −1 otherwise. Given two vectors u and v in Rd, x ◦ y denotes the
Hadamard (component-wise) product of u and v, max{u, v} denotes the vector whose i-th entry
is max{ui, vi}, and min{u, v} denotes the vector whose i-th entry is min{ui, vi}. Let 1 denote the
vector of all ones whose dimension should be clear from the context.

The natural numbers are given by N. For the usual d-dimensional Euclidean space denoted by
Rd we define 〈x, y〉 :=

∑d
i=1 xiyi, for x, y ∈ Rd, the standard inner product in Rd. We denote by

‖ · ‖1, ‖ · ‖2, and ‖ · ‖∞ the `1 norm, `2 norm, and the `∞ norm of a vector, respectively. The class
of all lower semicontinuous convex functions f : Rd → (−∞,+∞] such that domf := {x ∈ Rd :
f(x) < +∞} 6= ∅ is denoted by Γ0(Rd). For a closed convex set C of Rd, its indicator function ιC
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is in Γ0(Rd) and is defined as

ιC(u) :=

{
0, if u ∈ C,
+∞, otherwise.

For a function f ∈ Γ0(Rd), argminx∈Cf(x) is the set of points of the given argument in C for which
f attains its minimum value, i.e., argminx∈Cf(x) = {x ∈ C : f(y) ≥ f(x) for all y ∈ C}.

2 The Dantzig Selector with Proximity Algorithms

In this section, we develop a proximity algorithm for solving the optimization problem (2). We
begin with reviewing two existing works on this problem, namely the alternating direction method
(ADM) proposed in [18] and the linearized alternating direction method of multipliers (LADM)
proposed in [28]. Both methods work on the reformulated optimization problem (2) with D = I as
follows:

min
β∈Rp,τ∈{τ :‖τ‖∞≤δ}

{‖β‖1 : X>(Xβ − y) = τ}, (3)

where τ ∈ Rp is an auxiliary variable. The augmented Lagrangian function for problem (3) is

Lc(β, τ, γ) := ‖β‖1 + 〈γ,X>(Xβ − y)− τ〉+
c

2
‖X>(Xβ − y)− τ‖22,

where γ ∈ Rp is the Lagrange multiplier and c > 0 is a penalty parameter.
The iterative scheme of ADM for optimization problem (3) is

τk+1 ← argminτ∈{τ :‖τ‖∞≤δ}Lc(β
k, τ, γk),

βk+1 ← argminβ∈RpLc(β, τ
k+1, γk),

γk+1 = γk + c(X>(Xβk+1 − y)− τk+1),

which, with some elementary manipulations, can equivalently be written as
τk+1 ← argminτ∈{τ :‖τ‖∞≤δ}‖τ − (X>(Xβk − y) + γk

c )‖22,
βk+1 ← argminβ∈Rp{‖β‖1 + c

2‖X
>(Xβ − y)− τk+1 + γk

c ‖
2
2},

γk+1 = γk + c(X>(Xβk+1 − y)− τk+1).

(4)

The τ -related subproblem in (4) has a closed form solution, but the β-related subproblem does not
and is solved approximately by using the nonmonotone gradient method in [18].

The iterative scheme of LADM for optimization problem (3) is
βk+1 ← argminβ∈Rp{‖β‖1 + c〈vk, β − βk〉+ `

2‖β − β
k‖22},

τk+1 ← argminτ∈{τ :‖τ‖∞≤δ}‖τ − (X>(Xβk+1 − y) + γk

c )‖22,
γk+1 = γk + c(X>(Xβk+1 − y)− τk+1),

(5)

where ` > 0 is a proximal parameter and vk := X>X(X>(Xβk−y)−τk+ γk

c ). Note that the order
of updating τk+1 and βk+1 in ADM is reversed in LADM. For the β-subproblem in LADM, the
last two terms in the objective function can be viewed as the linearization of the quadratic term
c
2‖X

>(Xβ − y) − τk + γk

c ‖
2
2 with respect to β at βk after dropping a constant. Furthermore, the

β-subproblem, after completing the square of these two terms and ignoring the resulting constant
term, is the same as

βk+1 ← argminβ∈Rp{‖β‖1 +
`

2
‖β − (βk − c

`
vk)‖22,

3



which has a closed form solution. The τ -subproblem has a closed form solution as in ADM.
Therefore, LADM can be easily and efficiently implemented. It was shown in [28] that for any
c > 0 and ` > 2‖X>X‖22 and any initial iterate (β0, τ0, γ0), the sequence {(βk, τk, γk) : k ∈ N}
converges. Furthermore, the limit of the sequence {(βk, τk) : k ∈ N} is a solution of the Dantzig
selector problem (3).

In the following, we present our fixed-point theory based proximity operator algorithm for
solving the optimization problem (2). For simplicity of exposition, with the matrices X and D, the
vector y, and the constant δ appearing in problem (2), we set

A := D−1X>X, b := D−1X>y, C := {β ∈ Rp : ‖β − b‖∞ ≤ δ}. (6)

Then the optimization problem (2) can be rewritten as

β̂ ∈ argmin{‖β‖1 + ιC(Aβ) : β ∈ Rp}. (7)

The objective function of this problem is convex and coercive thanks to the `1-norm being coercive.
Hence a solution to problem (7) exists and can be characterized in terms of proximity operator. To
this end, we review the definition of proximity operator.

For a function f ∈ Γ0(Rd), the proximity operator of f with parameter λ, denoted by proxλf ,

is a mapping from Rd to itself, defined for a given point x ∈ Rd by

proxλf (x) := argmin

{
1

2λ
‖u− x‖22 + f(u) : u ∈ Rd

}
.

Now, we can present a characterization of solutions of problem (7) that is simply derived from
Fermat’s rule.

Theorem 2.1 Let the p×p matrix A and the vector b ∈ Rp be given in (6). If β ∈ Rp is a solution
to problem (7), then for any α > 0 and λ > 0 there exists a vector τ ∈ Rp such that

β = prox 1
α
‖·‖1

(
β − λ

α
A>τ

)
, (8)

τ = (I − proxιC)(Aβ + τ). (9)

Conversely, if there exist α > 0 and λ > 0 such that β, τ ∈ Rp satisfy equations (8) and (9), then
β is a solution of problem (7).

Proof: The proof of the result follows straightforwardly a general result in [16, Proposition 1]. For
completeness, we present its proof here. First, we assume that β is a solution to problem (7). By
Fermat’s rule and the chain rule of subdifferentiation, 0 ∈ ∂‖ · ‖1(β) + A>∂ιC(Aβ). Then for any
α > 0 and λ > 0 there exists τ ∈ 1

λ∂ιC(Aβ) such that −λ
αA
>τ ∈ ∂

(
1
α‖ · ‖1

)
(β), that is, in terms

of proximity operator, equation (8). Since the set ∂ιC(Aβ) is a cone, then τ ∈ 1
λ∂ιC(Aβ) implies

τ ∈ ∂ιC(Aβ) which is essentially equivalent to equation (9).
Conversely, if equations (8) and (9) are satisfied, we then have −λ

αA
>τ ∈ ∂

(
1
α‖ · ‖1

)
(β) and

τ ∈ ∂ιC(Aβ) accordingly. Using the fact that the set ∂ιC(Aβ) is a cone again, the second inclusion
τ ∈ ∂ιC(Aβ) implies λ

ατ ∈
1
α∂ιC(Aβ). Multiplying A> to both sides of the previous inclusion

and using the chain rule ∂(ιC ◦ A)(β) = A>∂ιC(Aβ), we have that λ
αA
>τ ∈ 1

α∂(ιC ◦ A)(β). Since

−λ
αA
>τ ∈ ∂( 1

α)(β), we obtain 0 ∈ ∂‖ · ‖1(β) + ∂(ιC ◦ A)(β). This shows that β is a solution to
problem (7). 2
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We comment on the computation of the proximity operators prox 1
α
‖·‖1 and proxιC appearing

in equations (8) and (9). The proximity operator prox 1
α
‖·‖1 at any u ∈ Rp is the well-known

soft-thresholding operator given as follow:

prox 1
α
‖·‖1(u) = sign(u) ◦max

{
|u| − 1

α
1, 0

}
. (10)

Lemma 2.2 Let δ be a constant, let b be a vector in Rp, and let the set C be given in (6). Then
for any vector v ∈ Rp,

proxιC(v) = b+ min{max{v − b,−δ1}, δ1}. (11)

and
(I − proxιC)(v) = proxδ‖·‖1(v − b).

Proof: It is well-known that the proximity operator proxιC is the projection operator onto the
set C. Since the set C is the cube with b as its center and 2δ as the length of its side in Rp.
Hence, proxιC(v) the projection of the vector v ∈ Rp is given by (11). Further, it holds that
(I − proxιC)(v) = (v − b)−min{max{(v − b),−δ1}, δ1}. From this identity, we can directly check
that for each i from 1 to n

(v − b)i −min{max{(v − b)i,−δ}, δ} = sign((v − b)i) ·max{|(v − b)i| − δ, 0},

which, by using equation (10), is proxδ‖·‖1((v − b)i). This completes the proof. 2

As a result of Lemma 2.2, equation (9) can be rewritten as follows:

τ = proxδ‖·‖1(Aβ + τ − b). (12)

Therefore, by Theorem 2.1, finding a solution β to problem (7) amounts to solving the coupled
fixed-point equations (8) and (12).

Two iterative schemes can be derived from equations (8) and (12). Let us write equation (8) as
β = prox 1

α
‖·‖1

(
β − λ

αA
>(2τ − τ)

)
. With any initial estimates τ−1 = τ0 and β0, the first iterative

scheme based upon equations (8) and (12) is as follows:{
βk+1 = prox 1

α
‖·‖1(βk − λ

αA
>(2τk − τk−1)),

τk+1 = proxδ‖·‖1(Aβk+1 + τk − b).
(13)

We would like to comment the connection of this scheme with some existing ones. The dual
formulation of (7), as derived in [18], is

max
τ∈Rp
{−〈b, τ〉 − δ‖τ‖1 : ‖A>τ‖∞ ≤ 1}.

Applying the primal-dual hybrid gradient method (see [12, Equation 2.18]) to the above dual
formulation yields exactly the iterative scheme (13). It was further pointed out in [8] that the
iterative scheme (13) is essentially the same as the linearized ADM applying to problem (7). In
other words, the iterative scheme (13) is the same as (5) in the case of D = I.

Now, let us introduce the second iterative scheme for problem (7). Let us write equation (12) as
τ = proxδ‖·‖1(A(2β − β) + τ − b). With any initial estimates β−1 = β0 and τ0, the second iterative
scheme based upon equations (8) and (12) is as follows:{

τk+1 = proxδ‖·‖1(A(2βk − βk−1) + τk − b),
βk+1 = prox 1

α
‖·‖1(βk − λ

αA
>τk+1).

(14)
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The sequence {(βk, τk) : k ∈ N} generated by the iterative schemes (13) and (14) will converge
for any initial seeds when λ/α < 1/‖A‖22. The proof of this convergence result can be found in
[8, 16]. Hence, the limit of the sequence {(βk, τk) : k ∈ N} is a fixed-point of equations (8) and (9).
In particular, the limit of the sequence {βk : k ∈ N} is a solution to problem (7).

As noted in [6], the Dantzig selector often slightly underestimates the true values of the nonzero
parameters. To correct this bias and increase performance in practical settings, a postprocessing
procedure was proposed in [6]. Assume that β∞ is the limit of the sequence {βk : k ∈ N} that
is generated through the iterative scheme (14). This postprocessing consists of two steps. The
first step is to estimate Λ := {i : β∞i 6= 0}, the support of the vector β∞. Let XΛ be the n × |Λ|
submatrix obtained by extracting the columns of X corresponding to the indices in Λ, and let β̂Λ

be the |Λ|-dimensional vector obtained by extracting the coordinates of β̂ ∈ Rp corresponding to
the indices in Λ. The second step of the postprocessing is to construct the estimator β̂ ∈ Rp such
that

β̂Λ = argmin{‖XΛβ − y‖2 : β ∈ Rp}

and set the other coordinates to zero. If the matrix X>ΛXΛ is invertible then β̂Λ = (X>ΛXΛ)−1X>Λ y.
Putting all above discussion together, a complete two-stage procedure for finding a solution of

problem (7) is described in Algorithm 1.

Algorithm 1 (Two-stage scheme for problem (7))

Input: Set the fixed parameters

y ∈ Rn, A ∈ Rp×p, b ∈ Rp, δ, α, tol ∈ R+, and λ = 0.999α/‖A‖22.

Initialization: Set the initial parameters

τ0 = 0, β−1 = β0 = 0, and k = 0.

Stage-I: Generate the sequence {(τk, βk) : k ∈ N} using Equations (10) and (14).

while (stopping criterion not met) do

τk+1 ← proxδ‖·‖1(A(2βk − βk−1) + τk − b),
βk+1 ← prox 1

α
‖·‖1(βk − λ

αA
>τk+1),

k ← k + 1.

end while
Stage-II: Let (τ∞, β∞) be the last set of parameters computed in Stage-I.

• Approximate supp(β∞) by Λ = {j : |β∞(j)| < tol}.
• Compute v̂ = argminv∈R|Λ| {‖XΛv − y‖2}.

• Extend v̂ to form the Dantzig selector β̂ on Λ:{
β̂(Λ(i)) = v̂(i), for i = 1 : |Λ|,
β̂(j) = 0, for j /∈ Λ.

Stage-I of Algorithm 1 terminates once the sequence {(τk, βk) : k ∈ N} reaches a stationary
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point. To estimate when this occurs, terminate the iterations when either of the following stopping
criteria are met:

1. The relative change between successive terms in the sequence {βk} falls below a specified
tolerance; ∥∥βk+1 − βk

∥∥
2

‖βk‖2
< ε,

for some ε > 0, or

2. The support of the sequence {βk} is stationary for a specified number of successive iterations;

supp(βk) = supp(βk+1) = · · · = supp(βk+η),

for a fixed η ∈ N and some positive integer k.

Stage-I is the largest contributor to the computational complexity of Algorithm 1, with each
iteration having complexity O(4np). In comparison, each outer loop of ADM computing the τ
and γ-related subproblems has complexity O(4np), while each inner loop of ADM approximating
the β-related subproblem has complexity O(8np). In general, Algorithm 1 and ADM will use
a different number of iterations to terminate their iterative stages, so their overall complexities
cannot be directly compared. However, the numerical experiments in the next section indicate
that Algorithm 1 tends to have less overall complexity than ADM since Algorithm 1 has a shorter
runtime even in situations where it requires more iterations.

3 Numerical Experiments

In the following experiments, we apply the proposed proximity operator based approach presented
in Algorithm 1 and the alternating direction method (ADM) presented in [18] to solve the Dantzig
selector problem (2) using both synthetic and real data sets. The experiments using synthetic
data are performed in MATLAB R2013a on single nodes of the Condor Supercomputer, hosted at
AFRL/RIT Affiliated Resource Center. The full capabilities of Condor were not taken advantage
of; we ran the algorithms in serial using single nodes to emulate a typical high end consumer
workstation. Each utilized node is equipped with an Intel Xeon X5650 6 core CPU, with 2.67 GHz
and 6×8 GB RAM. The experiments using the real data set are performed in MATLAB R2014a
on a PC with an Intel Core i7-3630QM 2.40 GHz processor and 16 GB RAM running Windows 7
Enterprise.

Example 3.1 Synthetic Data Set

In this series of simulations, sparse coefficient vectors are generated then recovered from noisy
random linear observations using both Algorithm 1 and ADM. The parameters used are n =
720m, p = 2560m and s = 80m for m ∈ {2, 3, . . . , 10}, and σ ∈ {0.01, 0.05, 0.10, 0.15} corre-
sponding to 1%, 5%, 10% and 15% noise levels. For each combination of m and σ, 100 simulations
each of Algorithm 1 and ADM are performed. All other parameters for ADM are selected following
the guidelines in [18, Section 3] and the parameters selected for the initialization stage of Algo-
rithm 1 are tol = 2σ, α = 0.2‖A‖22 and δ = σ

√
2 log p. The parameters for the stopping criteria

are ε = 10−4 and η = max {d4 log(α) log(σ) + 2αe , 5}. The parameters tol, δ and η depend on
the noise level σ, which in practice may not be known a priori. However, the noise level may
be well-approximated using existing methods. In the event that the noise level is not accurately
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approximated, the speed of convergence of Algorithm 1 will be affected, but the accuracy should
not suffer much. The stopping criteria

The n × p sensing matrices X are generated for each simulation with independent Gaussian
entries normalized so each column has unit `2 norm. To generate the coefficient vector, for each
simulation a support set S of size |S| = s is selected uniformly at random. Then the vector β with
indices in S is defined according to βS(i) = εi(1 + |ai|), where {ai} is a collection of independently
and identically distributed random variables sampled from the standard normal distribution and
{εi} is a collection of independently and identically distributed random variables sampled from the
uniform distribution on {−1, 1}. For i /∈ S, set βi = 0. Then Algorithm 1 and ADM are used
to approximate the Dantzig selector β̂ from the observations y = Xβ + z, where z is a collection
of independent and identically distributed random variables sampled from the normal distribution
with mean zero and standard deviation σ.
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Figure 3.1: A demonstration of the accuracy of the Dantzig selector recovered using Algorithm 1 and
ADM with and without postprocessing for a single simulation of Experiment 3.1 with parameters
σ = 0.05 with (n, p, s) = (720, 2560, 80).

The accuracy of the Dantzig selector recovered in the simulations is measured by

ρ :=

(
‖β − β̂‖22∑p

j=1 min{β2
j , σ

2}

)1/2

, (15)

where β denotes the true parameter and β̂ denotes the parameter recovered using either Algorithm 1
or ADM. The denominator term of Equation (15) is the expected mean squared-error of the ideal
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estimator [6]. Therefore, ρ ≥ 0, and a smaller ρ implies a more accurate estimator.
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Figure 3.2: A comparison of ρ, computed as in Equation (15) which measures the accuracy of
the approximated Dantzig selectors, for Algorithm 1 and ADM for noise levels σ = 0.01, 0.05, 0.10
and 0.15 in Example 3.1. In each plot, the points along the curve represent the mean number of
iterations required for each parameter m over 100 simulations, and the points on the vertical lines
represent one standard deviation away from the means.

The effects of Stage-II of Algorithm 1 and the postprocessing step of ADM are illustrated in
Figure 3.1. The figure displays values of the exact simulated vector β and of the Dantzig selector
β̂ approximated by each algorithm, first without performing postprocessing (the left column of
Figure 3.1) and then with postprocessing (the right column of Figure 3.1) for one simulation
with parameters (n, p, s) = (720, 2560, 80) and noise σ = 0.05. One can clearly see that the
postprocessing not only corrects the underestimated magnitudes of nonzero components of the
estimates, but also eliminates unwanted nonzero components.

The results of the above simulations suggest that Algorithm 1 has less overall complexity than
ADM, since the accuracy of the Dantzig selectors approximated by each method are similar yet
Algorithm 1 completes much faster than ADM, even when requiring more iterations. Figure 3.2
displays the mean and standard deviation of ρ over 100 simulations for each parameter m and σ
and for both Algorithm 1 and ADM. Note that the accuracy of the Dantzig selector approximated
by the two algorithms are very similar across all parameter levels. Figure 3.3 displays the mean
and standard deviation of the CPU time, and Figure 3.4 displays the mean and standard deviation
of the total number of iterations performed by Algorithm 1 and the total number of iterations
performed in the inner loop of ADM for 100 simulations for each parameter m and σ. From the
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Figure 3.3: A comparison of the CPU time required to recover the Dantzig selector using Algo-
rithm 1 and ADM for noise levels σ = 0.01, 0.05, 0.10 and 0.15 as in Example 3.1. In each plot, the
points along the curve represent the mean number of iterations required for each parameter m over
100 simulations, and the points on the vertical lines represent one standard deviation away from
the means.

figures, one can see that although Algorithm 1 requires more iterations than ADM, Algorithm 1
completes significantly faster.

Example 3.2 Leukemia Data Set

In this experiment, the Dantzig selectors produced by Algorithm 1 and by ADM are used with
a collection of biomarker data to indicate whether a patient may be diagnosed with a specific type
of cancer. The biomarker dataset, first introduced in [14] and studied in [27, 28], contains the
measurements of 7128 genes related to leukemia diagnoses. The dataset is split into a training set
and a testing set. The training set is sampled from 38 patients, 27 of whom were diagnosed with
acute lymphocytic leukemia (ALL) and 11 with acute mylogenous leukemia (AML). The testing
set is sampled from 34 patients, 20 diagnosed with ALL and 14 with AML.

Let Xtrain ∈ R38×7128 contain the biomarker data in the training set, where each row is all 7128
gene measurements of a single patient and each column has been normalized to have unit `2 norm.
Let ytrain ∈ R38 be the column vector indicating the diagnosis of each patient in the training set:

ytrain(j) =

{
0, if patient j in the training set is diagnosed with ALL,

1, if patient j in the training set is diagnosed with AML.
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Figure 3.4: A comparison of the number of iterations required to recover the Dantzig selector using
Algorithm 1 and ADM for noise levels σ = 0.01, 0.05, 0.10 and 0.15 in Example 3.1. In each plot,
the points along the curve represent the mean number of iterations required for each parameter m
over 100 simulations, and the points on the vertical lines represent one standard deviation away
from the means.

Similarly define Xtest ∈ R34×7128 and ytest ∈ R34 from the data in the testing set.
This experiment has a training phase and a testing phase. In the training phase, a sparse vector

β̂ is found such that Xtrainβ̂ = ytrain. To preprocess the data, only the biomarkers with the largest
variance are used to train the parameter β̂. To this end, select a positive integer N , and let Λ be
the N indices of columns from Xtrain with largest variance. Let X̃train ∈ R38×N be the submatrix
of Xtrain with columns in Λ. Form the reduced problem

β̂Λ ∈ argminβ∈RN
{
‖β‖1 :

∥∥∥X̃>train

(
X̃trainβ − ytrain

)∥∥∥
∞
≤ δ
}
. (16)

The Dantzig selector β̂Λ ∈ RN satisfying problem (16) is computed using Algorithm 1 and ADM,
then extended to form β̂ ∈ R7128 via{

β̂(Λ(j)) = β̂Λ(j), for j = 1 : N,

β̂(k) = 0, if k /∈ Λ.

In the testing phase, the trained parameter β̂ is used to predict the diagnoses of patients in the
testing set. The predictive indicator vector ŷtest ∈ R34 is computed from y = Xtestβ̂ by thresholding
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and clustering values near the threshold boundary. Set

ŷtest(j) =

{
0, if y(j) < 0.49,

1, if 0.51 < y(j).

Let y0 = max{y(j) : y(j) < 0.49} and y1 = min{y(j) : 0.51 < y(j)}. For values of j such that
0.49 ≤ y(j) ≤ 0.51, set

ŷtest(j) =

{
0, if |y(j)− y0| ≤ |y(j)− y1|,
1, if |y(j)− y1| < |y(j)− y0|.

The jth patient in the testing set is predicted to have a diagnosis of ALL if ŷtest(j) = 0 and a
diagnosis of AML if ŷtest(j) = 1.

The above procedure was used to predict the diagnoses of patients in the testing set using
the Dantzig selector β̂Λ computed using both Algorithm 1 and ADM with parameters N = 1000,
α = ‖X>trainXtrain‖22 and tol = 0.1 and stopping criteria parameters η = 80 and ε = 10−4 for each δ
in {0.0625, 0.125, 0.1875, 0.25, 0.3125, 0.375}. Figure 3.5 displays the results of these simulations
regarding the accuracy of the recovered indicator vector ŷtest in predicting the leukemia diagnoses of
patients in the testing set, as well as the number of iterations and CPU runtime used by Algorithm 1
and ADM. As shown in Figure 3.5(a), Algorithm 1 typically predicted the diagnoses of patients with
higher acuracy than ADM. Moreover, for each parameter δ, Algorithm 1 used fewer iterations than
ADM and the time used by Algorithm 1 was several orders of magnitude less than the time used
by ADM, as shown in Figures 3.5(c) and (d). Figure 3.5(b) illustrates the tendency of Algorithm 1
to predict the diagnosis of patients in the testing set with higher accuracy than ADM. This plot
displays the values of y = Xtestβ̂ recovered using Algorithm 1 and by ADM prior to the thresholding
step, along with the true values of ytest. Since the values recovered by Algorithm 1 tend to be more
spread out, it is easier to accurately separate them into two distinct clusters.

4 Conclusion

In this paper, we have developed an iterative algorithm to compute the Dantzig selector, the solution
to the minimization problem in problem (2). The algorithm is based on the proximity operator
and its relationship to problem (7). The two-stage algorithm we proposed is an improvement over
some other recently proposed methods to find the Dantzig selector, which require the use of inner
loop to estimate parameters within each step of the algorithm. Additionally, our proposed method
uses a novel stopping criterion based upon the support of the approximated parameters.

We compare the proposed algorithm to the alternating direction method proposed in [18].
Theoretically, two methods produce results of similar quality, however each iteration of Stage-I
of Algorithm 1 has less computational complexity than each iteration of the inner loop of the
alternating direction method. The numerical experiments demonstrate that the proposed method
and the alternating direction method typically approximate the Dantzig selectors with similar
accuracy, yet Algorithm 1 produces results in significantly less time, whether it uses more iterations
than the alternating direction method, as in Experiment 3.1, or fewer iterations than the alternating
direction method, as in Experiment 3.2.

Acknowledgements

The authors are grateful to the anonymous reviewers for their helpful comments. The authors also
would like to thank Drs. X. Wang and X. Yuan for providing the MATLAB code to approximate

12



0.0625 0.125 0.1875 0.25  0.3125 0.375 

0

1

2

δ

Number of Misdiagnosed Patients

 

 

Algorithm 1
ADM

(a) The number of patients in the testing set
misdiagnosed by the predicted indicator vec-
tor recovered by Algorithm 1 and ADM for
various values of the parameter δ.

0 5 10 15 20 25 30 35
−1

0

1

jth Patient

Predicted Indicator

 

 
Actual
Algorithm 1
ADM

(b) Values of the actual diagnosis indicator
vector ytest along with values of the predicted
indicator vectors recovered by Algorithm 1
and ADM prior to separating values into clas-
sification groups for δ = 0.25.

0.0625 0.125 0.1875 0.25  0.3125 0.375 

10
1

10
2

10
3

δ

Number of Iterations

 

 

Algorithm 1
ADM

(c) The number of iterations required by Al-
gorithm 1 and ADM to recover the Dantzig
selector β̂Λ for various values of the parame-
ter δ.

0.0625 0.125 0.1875 0.25  0.3125 0.375 
10

−4

10
−2

10
0

10
2

10
4

δ

S
ec

on
ds

CPU Time

 

 

Algorithm 1
ADM

(d) The CPU runtime required by Algo-
rithm 1 and ADM to recover the Dantzig se-
lector β̂Λ for various values of the parameter
δ.
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the Dantzig selector using the alternating direction method and for sharing the real dataset used
in Example 3.2.
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